Skip to content

数学分析精讲回忆版

作者:黄景娟

1 判断题

1-1

一阶导等于 0,x0 存在严格局部极小值当且仅当二阶导大于 0 (×)

1-2

Rn 任意范数等价

1-3

x(0,1),xn 不一致收敛到 0

1-4

等度连续则一致连续

1-5

a>0,logax 不是凸函数

1-6

紧空间存在可数稠密子集

1-7

fn 连续 + 逐点收敛不能推 f 连续

1-8

偏导数存在不能推可微

1-9

可逆线性算子是 L(Rn) 的开集

1-10

还有一个不记得了

2 积分

2-1

0πsin3xdx

2-2

12xlnxdx

3

f 连续可微, f(1)=0,01f4(x)dx=1, 证明 01f(x)2dx01x2f6(x)dx>116

解:

用Cauchy不等式即

(abf(x)g(x)dx)2abf2(x)dxabg2(x)dx

放缩, 接着用分部积分证明不等式

4

给出 f(x,y)vx0, 求 f(x0)(v) 要用矩阵, 转为梯度算然后 8 分没了

5

一致收敛和一致Cauchy等价证明, 改为了 sup|fnfm|, 本质一样

7.8 Theorem The sequence of functions {fn}, defined on E, converges uniformly on E if and only if for every ε>0 there exists an integer N such that mN, nN,xE implies

|fn(x)fm(x)|ε

Proof Suppose {fn} converges uniformly on E, and let f be the limit function. Then there is an integer N such that nN,xE implies

|fn(x)f(x)|ε2,

so that

|fn(x)fm(x)||fn(x)f(x)|+|f(x)fm(x)|ε

if nN,mN,xE. Conversely, suppose the Cauchy condition holds. Then, the sequence {fn(x)} converges, for every x, to a limit which we may call f(x). Thus the sequence {fn} converges on E, to f. We have to prove that the convergence is uniform

Let ε>0 be given, and choose N such that (13) holds. Fix n, and let m in (13) . Since fm(x)f(x) as m, this gives

|fn(x)f(x)|ε

for every nN and every xE, which completes the proof

9.19 Theorem Suppose f maps a convex open set ERn into Rm , f is differen- tiable in E , and there is a real number M such that

f(x)M

for every xE .Then

|f(b)f(a)|M|ba| for all aE,bE

Proof Fix aE,bE .Define

γ(t)=(1t)a+tb

for all tR1 such that γ(t)E .Since E is convex, γ(t)E if 0t1 . Put

g(t)=f(γ(t))

Then

g(t)=f(γ(t))γ(t)=f(γ(t))(ba),

so that

|g(t)|f(γ(t))|ba|M|ba|

for all t[0,1] .By Theorem 5.19,

|g(1)g(0)|M|ba|

But g(0)=f(a) and g(1)=f(b) .This completes the proof

不动点定理证明 题干改为 3d(Tx,Ty)<d(x,y) ,

9.23 Theorem If X is a complete metric space, and if φ is a contraction of X into X , then there exists one and only one xX such that φ(x)=x

Proof Pick x0X arbitrarily, and define {xn} recursively, by setting

xn+1=φ(xn)(n=0,1,2,)

Choose c<1 so that(43) holds.For n1 we then have

d(xn+1,xn)=d(φ(xn),φ(xn1))cd(xn,xn1)

Hence induction gives

d(xn+1,xn)cnd(x1,x0)(n=0,1,2,)

If n<m , it follows that

d(xn,xm)i=n+1md(xi,xi1)(cn+cn+1++cm1)d(x1,x0)[(1c)1d(x1,x0)]cn

Thus {xn} is a Cauchy sequence.Since X is complete, limxn=x for some xX

Since φ is a contraction, φ is continuous(in fact, uniformly con- tinuous) on X .Hence

φ(x)=limnφ(xn)=limnxn+1=x