2025 春季学期 概率论与数理统计 期中考试试卷
题号 | I | II | III-1 | III-2 | III- 3 | III-4 | III-5 | III-6 |
---|---|---|---|---|---|---|---|---|
分值 | 20 分 | 20 分 | 10 分 | 10 分 | 10 分 | 10 分 | 10 分 | 10 分 |
1 选择题(每题4分, 总共20分)
Part I-Single Choice(4 marks each question, 20 marks in total)
1-1
将 7 个人分成 3 组来执行相同的任务, 其中一组有 3 个人, 另外两组都有 2 个人.有多少种分组方式?
Divide 7 people into 3 groups to perform the same task, with one group of 3 and the other two groups of 2 each.How many ways are there to form the groups?
A. 35
B. 210
C. 105
D. 70
1-2
随机事件
A.
B.
C.
D.
1-3
某种医学检测会给出阳性或阴性结果. 阳性结果旨在表明一个人患有某种(罕见) 疾病, 而阴性结果旨在表明他们没有该疾病. 然而, 假设该检测有时会给出错误的结果: 在没有该疾病的 4 中, 有
A certain medical test either gives a positive or negative result. The positive test result is intended to indicate that a person has a particular (rare) disease, while a negative test result is intended to indicate that they do not have the disease. Suppose, however, that the test sometimes gives an incorrect result: 1 in 100 of those who do not have the disease have positive test results, and 2 in 100 of those having the disease have negative test results. If 1 person in 1000 has the disease, find the probability that a person with a positive test result actually has the disease.
A.
B.
C.
D.
1-4
随机变量
The probability density function of the random variable
A.
B.
C.
e.
D.
1-5
给定联合密度函数
Given the joint density function
A.
B.
C.
D.
2 填空题(每空2分, 总共20分)
Part II-Blank Filling(2 marks each blank, 20 marks in total)
2-1
设
Let
2-2
一个不透明的袋子中装有5红球和3白球, 每次取1球不放回, 直到取出所有白球为止.设停止时总取球次数为
2-3
在长度为
On a line segment of length
2-4
设随机变量
2-5
假设离散型随机变量
2-6
设
2-7
假设
2-8
设
2-9
设随机变量
2-10
设
3 解答题(每题10分, 共60分)
Part III-Question Answering(10 marks each question, 60 marks in total)
3-1
一个盒子中有 4 个红球, 3 个白球和 2 个黑球, 编号分别为红球
(1) 第三次才取到红球的概率;
(2) 已知第二次取到白球的条件下, 第一次取到黑球的概率;
(3) 三次取球中恰好有 1 个红球, 1 个白球, 1 个黑球.(顺序不限) 的概率
A box contains: 4 red balls(numbered 1-4) , 3 white balls(numbered 1-3) , 2 black balls (numbered 1-2) . Three balls are drawn without replacement in sequence. Find the following probabilities:
(1) The probability that the third ball is the first red ball drawn(i.e., the first two balls are not red, and the third is red)
(2) The conditional probability that the first ball is black, given that the second ball is white
(3) The probability that the three balls drawn consist of exactly one red, one white, and one black ball(in any order)
3-2
设
Let
3-3
某抽奖活动规则如下:
抽奖箱中有 10 张券, 其中 3 张是一等奖, 4 张是二等奖, 3 张是谢谢参与.
玩家依次不放回地抽取 2 张券,
表示抽到一等奖的数量, 表示抽到二等奖数量.
(1) 求
(2) 分别求
(3) 求抽到一二等奖数量之和的随机变量
A lottery event is conducted with the following rules:
There are 10 tickets in a box: 3 are First Prize, 4 are Second Prize, and 3 are No Prize
A player draws 2 tickets without replacement. Let
be the number of First Prizes drawn, and the number of Second Prizes drawn
Questions:
(1) Construct the joint probability distribution table for
(2) Find the marginal distributions of
(3) Define
3-4
设
(1) 求
(2) 求
Let
(1) Find the probability density function of
(2) Find the probability density function of
3-5
假设随机变量
(1) 求
(2) 求条件概率
Suppose random variables
(1) Find the joint probability mass function of
(2) Find the conditional probability
F(x, y) = \begin{cases}c\left(1-e^{-2 x}\right) \left(1-e^{-3 y}\right) , & 0<x, 0<y \ 0, & \text { otherwise }\end
其中
(1) 求出常数
(2) 求出
(3) 计算
Let
where
(1) Determine the value of
(2) Find the two marginal p.d.f.s
(3) Calculate