Skip to content

一(1)A

f(xaz,ybz)=0u=xazv=ybzy,z)=f(axaz,ybz)=0fu(1azx)+fv(zx)+fv(1bzy)=0(afu+bfv)zx=fu

or F(x,y,z)=f(axaz,ybz)=0

⇒:zx=FxFz,zy=FyFzazx+bzy=afuafu+bfv+bfvafu+bfv=1

Fz=afutfv,Fx=fu,Fy=fv

(2) C

(2) n>0,an>0.limnnan=limnan1n=10,1n diverges an diverges

(3) B

2x2+y2=z2 椭圆锥.

f(x,y)=φ(x+y)+φ(xy)+xyx+yψ(t)dt. let x+y=uxy=vfx=φu+φv+ψ(x+y)ψ(xy)fy=φuφv+ψ(x+y)+ψ(xy)fx2=φuu+φvu+ψu(x+y)ψv(xy)2fy2=φuu+φu+ψu(x+y)ψv(xy)fx2=2fy2

limx,y)(0,0)(1+xy)1x2+y2=limx0(1+x2)1x2=limx0[(1+x2)1x2]12=e12

dees not exist

lim(x,y)(0,0)y=x(1+xy)1x2+y2=limx0(1x2)12x2=limx0[(1x2)1x2]12=e12

(I)

\begin{aligned} & =\text { (1) } \frac{-\frac{3}{2}}{\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}} \\ & \Rightarrow \left\lvert\, \begin{array}{l} |\vec{a}|^{2}+\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}=0 \\ \vec{a} \cdot \vec{b}+|\vec{b}|^{2}+\vec{b} \cdot \vec{c}=0 \\ \vec{a} \cdot \vec{c}+\vec{b} \cdot \vec{c}+|\vec{c}|^{2}=0 \end{array}\right \end{aligned}

(1)

(2)

(1) + (2)+ (3)2(ab+ac+bc)=3

ab+bc+ca=32

(2) 2i4i+6k

(1)

c+c+c+a×a|=a+i+ijk121111|=i2j+3k

2)c=K(1,2×3) of x

c(ı2j+k)=168k=16k=2c=(2,4,6)

(3) . 1

Since n=2(tan1nkln(11n)) converges, let x=1n,nx0

limx0|tanxkln(1x)xp|=c0,p>1

limx0|sec2xpxp10+k1x|=c0,p>∣ω1pxp101+k0k=1

8 (when k=1limx0tanx+ln(1x)xp=limx0sec2x11xpxp1=limx0(1x)s2x1pxp1=

=limx0sec2x+2(1x)sec2xtanxp(p1)xp2=limx01+2(1x)tanx10p(p1)xp2p2=0
f=y(x)=sinxf(x)=cosx,f(x)=sinxk=|f(x)|(1+(f(x))2)32=|sinx|(1+cos2x)32=|sinx|(2sin2x)32

when sinx max, sin2x is max

2sin2x is min. |sinx|1(2sin2x)32 is max (2sin2x)32 is min. 1(2sin2x)32 is max k is max |sinx|=1k=1

(5) 22ln2

(z2+y)x=xyxln(z+y)=lnxyln(z+y)+x1z+yzx=1xyy let x=1,y=2z=0ln2+12zx=1zx=2zln2

or let F(x,y,z)=xln(z+y)lnxy

Fx=ln(z+y)Fz=xz+y=x2=ln21zx=FxFz=22ln2A=π2π212[a2(1+cosθ)2a2]dθ or A=20π212[a2(1+cosθ)2a2]dθ=π2π212[2a2cosθ+a2cos2θ]dθ=π2π212[2a2cosθ+a21+cos2θ2]dθ.=12(2a2sinθ+12a2θ+a24sin2θ)]π2π2=2a2A1)=20π12[a2(1+cosθ)2]=0π(a2+2a2cosθ+a2cos2θ)dθ.=0π(a2+2a2cosθ+a2(+cosθ2)dθ.=a2θ+2a2sinθ+a22θ+a24sin2θ]0π=32a2πA2=A1A=32a2π(2+π4)a2=54πa22a2=(54π2)a2
  1. r(t)=f(t)i+g(t)j+h(t)k., f(t)=0tcos(x2)dx,g(t)=tcost
h(t)=n=1tnh(t)=i=1tn1=n=0tn=11tf(t)=cos(t2)g(t)=cost+tsint

f(0)=1,g(0)=1,h(0)=1

f(0)=(1,1,1)

  1. (1) f(x,y)={ysin1x2+y2,(x,y)(0,0)0,(x,y)=(0,0)
lim(x,y)(0,0)f(x,y)=lim(x,y)(0,0)ysin1x2+y2=0 since |sin1x2+y2|10|f(x,y)||y|0

(2) fx(0,0)=limh0f(h,0)f(0,0)h=limh000h=0

fy(0,0)=limh0f(0,h)f(0,0)h=limh0hsinhh0h=limh0sin1h2 does nt exist. 

6.(1) lim(x,y)(0,0)xyx2+y2=limr0r2cosθsinθ|r|=limr0|r|cosθsinθ=0. since |cos θsinθ∣⩽1. or 0|xyx2+y2||y|0

(2) lim(x,y)(0,0)xy3+2x2y4x2+y6=lim(x,y)(0,0)ky6+2k2y7k2y6+y6=limy0k+2k2yk2+1=kk2+1 x=ky; the limit does not exist

T. (1) f(x)=n=1n+2n(n+1)xn

|un+1un|=|(n+3)(n+2)(n+1),(n+2)x||x|<11<x<1

when x=1n=1n+2n(n+1) diverges since n+2n(n+1)1n1,1n diverges

when x=1,n=1(1)nn+2n(n+1) converges conditionally. Sine n+2n(n+1) diverges

[1,1]an=n+2n(n+1)>00

(2) f(x)=n=1n+2n(n+1)xn=n=1xnn+1+n=12n(n+1)xn=n=1xnn+1+2n=1xnn2n=1xnn+1=2i=1xnnnnxnxn

g(x)=n=1xnn+1=1xn=1xn+1n+1,(n=1xn+1n+1)=n=1xn=x1x

if x0

n=1xn+1n+1=x1xdx=1(1x)1xdx=dx1xx=ln(1x)x+c let x=0.c=0

g(x)=ln(1x)x1, if x0

h(x)=n=1xnnnh(x)=n=1xn1=11xh(x)=ln(1x)f(x)={2ln(1x)+ln(1x)x+1=1+(1x2)ln(1x),x0.0.x=0.
  1. n=2(1)p+1np(lnn)2,p>0. Let un=1np(lnη)2{ converges absolutely if p1 converges conditionally if 0<p<1

(2) if p=1n21n(lnn)2,f(x)=1x(lnx)2,2dxx(lnx)2=1nx]2=1ln2 converges un ca query

ΣKn converge concrify

  1. limn((n2n)e1nn4+1)

lef f(x)=(x2x)e1xx4+1

=(x2x)(1+1x+12!x2++1k!xk+)=x21213x+x4+1=x21+1x4=x2(1+12x418x8+)=x2+12x218x6+f(x)=1213x+limxf(x)=12