Skip to content

2020春高数下期末试题-答案

TTT

DAB

3-(1)

xy+2z=±3

解:

 设 xy+2z=af=(2x,4y,2z)n=(1,1,2){2cx=14cy=12cz=2{x=12cy=14cz=1cx22y2+z2=298c2=2c=±34

代入 xy+2z 解得 a=±3 !

3-(2)

dxdy

3-(3)

y+z=3

3-(4)

0

3sinθ=1+sinθsinθ=ϕ2θ=π6θ=π6

A=π65π612(r12r22)dθ=π6π612((3sinθ)2(1+sinθ)2)dθ=π

|v|dt

r(t)=(12sint)i(12cost)j+5tkv(t)=12costi+12sintj+5k|v(t)|=13

A(0,12,0)t=0

|0x13dt|=26πx=±2π(0,12,±10π)

limn|an|n=|2x|<1x(12,12)

(1) x=12an=(1)nln(n+2)limn1ln(n+2)=0A1ln(n+2)1ln(n+2+1)

n=0(1)nln(n+2) 收敛 |an|=1ln(n+2)>1nn=0(1)nln(n+2) 条件收敛.

(2) x=12an=1ln(n+2)n=01ln(n+2) 发散

[12,12) 收敛

用泰勒展开和二项级数定理分别展开 cos(sinx)1x2.

cos(sinx)1x2=13x4+O(x5)(注若令 cos(sinx)=1 则会丢掉一些, 会得出错误结论)

a=4b=13

是错的.

内部: f(x,y)=ex2y2(x2+2y2)

{fx=2xex2y2(1x22y2)=0fy=2yex2y2(2x22y2)=0{x=0y=0{x=0y=±1{x=±1y=0

外部:

x2+y2=4f(x,y)=e4(4+y2)(±2,0),(0,±2)f(0,0)=0f(0,±1)=2e1f(±1,0)=e1f(±2,0)=4e4f(0,±2)=8e4fmax=2e1fmin=0

z=1z=x2+y2x=ρsinφcosθy=ρsinφsinθz=ρcosz=1ρ=1cosφ02π0π401cosφρcosφρρ2sinφdρdφdθ=2π15(221)

Lsin2xdx+2(x21)ydy=0πsin2xdx+2(x21)sinxcosxdx(y=sinxdy=cosxdx)=0πx2sin2xdx(分步积分)=π22

十一

×F=|ijkxy0zyxzx2|=(x)i+(2x)j+(z1)k

n=13(1,1,1)

dσ=1+1+1dxdy=3dxdy

s×fndσ=0101x(4xy)dydx=56

十二

F=2(x+y+z)0π02012(rcosθ+rsinθ+z)dzrdrdθ=02π02(2r(cosθ+sinθ)+1)rdrdθ=02π02(2r2cosθ+2r2sinθ+r)drdθ=4π