Skip to content

Ii. (15pts) Determine whether the following statements are true or false? No = justification is necessary

(1) If an<0 for n>1000, and n=1an converges., then n=1an2 may diverges

n=1an converges, an<0 for n>1000n=1|an|=n=11000|an|n=0001000an converges and limnan=0

limn|an|=limnan2|an|=0,|an| converges, an2 converges. False

(2) Suppose that the power series n=1an(x1)n converges at x=0, and diverges at x=2, then the interval of convergence of this series is [0,2)

True

i.an(x1)n converges at x=0(ln(x1)n converges absolutely |x1| so. x1=1. i.e 0<x<2

diverges at x=2 ie x1=1 diverges for |x1|>1x> or x<0 diverges So converges for 0x<2

*since. anxn converges at x=c0 converges absolutely for all |x|<|c| diverges at x=d diverges for |x|>|d|

or 2. an(x1)n converges at x=0limnan=0ε=∣ sit |an|<1n>N

|an(x1)n|<|x1|n for |x1|<1 and (x1|n converges |an|x1)n converges for (x1∣≪⇒0<x<2 converges at 0x<2
  1. If f(x,y) has partial derivative's fx(x,y) and fy(x,y) ot (x0,y0), then limxx0f(x,y0)=limyy0f(x0,y)=f(x0,y0)

 True  Since fx(x0,y0)=limxx0f(x1,y0)f(x0,y0)xx0=, exist, and xx00limxx0f(x,y0)=f(x0,y0)

fy(x0,y0)=limyy0f(x0,y)f(x0,y0)yy0 exist, and limyy0(yy0)=0limyy0f(x0,y)=f(x0,y0)

limxx0f(x,y0)=limyy0f(x0,y)=f(x0,y0)

(4) If a vector function Ht ) is always perpendicular to its derivative dFdt then |r(t)| must be constant

Thu e

 True.  since F(t)drdt=0(r(t)H(t))=2r(t)dFdt=0

Hf)∣=c

(5) The curvative of a unit circle is greater than the curvature of the parabola y=x2 at the origin

 False  For unit circe: x2+y2=1{x=costy= int. r(t)=(cost)t+(sint)i

T=V=(sint)i+(cost)j

|dTdt|=1,|v(t)|=1k=1

For y=x2y=2x,y=2y(0,0)=2

k=|f(x)|(1+(f(x))2)3=21=2
  1. Multiple choice Questions: (only one correct answer for each of the following questions)

(i) Let a and b be two nonzero orthogonal vectors, which of the following must be the?

(A) |a+b|=|a|+|b|

(B) |ab|=|a||b|

(C) |a+b|=|ab|

(D) a+b=ab

C. |a+b|=|a|2+2ab+|b|2=|a|2+|b|2,|ab|=|a|22ab+|b|2=|a|2+b |a+b|=|ab|

F(2) The equations of two lines are 4:x=t,y=2t,z=t and k:x=12t y=t,z=1+t. Then 4 and l2 are

(A) parallel ; (B) orthogonal ; (C) intersect with each offer: (D) skew ter v1=(1,2,1),v2=(2,1,1)v1v2=1,|v1|=|v2|=6 cosθ=16

but if it intersect {x=t=12ty=2t=t{t=13t=0x

(3) Suppose 0an<1n,(n=1,2,), then which of the following series mast  converges ? D(A)i=1an,(B)i=1(1)nan,(C)i=1anan(D)n=1(1)nan2

(A)n<1nan2<1n2an2 converges

Σ(1)nan2 converges. 
  1. (9pts) Does the following series absolutely converge, conditionally converge, or diverge? Give reasons for your answer

(I) n=1(1)n(11h)h2

⇒=lnn|an|n=limn(1)n(11n)n2n=limn(11n)n=e1<1

converges absolutely

(2) n=1(1)ne1n

limne1n=e0=10 diverges

(3) n=0019(1)n1n22019n+1

For n=0191n22019n+1,limn1n22019n+11n=1,1n diverges diverges

un=1n2209n+1>0,un>un+1,un0 anverqes conditionally

  1. 10 pts)

(i) Find the radius and interval of convergence of the series n=0(1)n+12nxnn2+n+1

(2) For what values of x does the series converge absolutely, or conditionally?

|un+1un|=2n+1n2+n+12n(n+1)2+(n+1)+1|x|2|x|<1|x|<1211

(2) when x=12n=0(1)n+1n2+n+1 converges conditionally since {1n2+n+101n,limn01n2+n+10

limnn2+n+11n=1,1n diverges

1n2+n+1 diverges

when x=12,n=0(1)n+(1)nn2+n+1=n=01n2+n+1 diverges since limn1n2+n+11n=1,1n diverges

converges absolutely: (12,12), converges: (12,12]

  1. (1 pts) converges conditionally: x=12

Let x=cos3t,y=sin3t, where 0tπ2, be a parametrization of a curve

(i) Find the length of the curve

(2) Find the area of the surface generated by revolving the carve about th

(1) dxdt=3cos2tsint,dydt=3sin2tcost(dxdt)2+(dydt)2=9sin2tcos2t x axis

L=0π2(dxdt)2+(dydt)2dt=0π29sin2tcos2tdt=0π23sin2tcostdt=0π23sintdsint=32sin2t]0π2=32

(2) L=0π22πy(d(x)dt)2+(dydt)2dt=0π22πsin3t3sintcostdt=0π26πsin4tdsint

=65πsin5t]0π2=65π

6.c10pts) Find the equation of the plane trough the points (2,1,1) and (1,0,7 perpendicular to the plane 2x+3y5z+6=0

let P(2,1,1),Q(1,0,1)PQ=(1,1,0),n1=(2,3,5)

k=pa×n=|iik110235|=5i5j5k the plane: 5(x2)5(x+1)5(x+x+y+z=0

k 7. ( 10 pts ) A particle is located at the point (1,0,2). Its initial speed F is |v(0)|=3 at time t=0, and the direction of its initial velocity is toward the point (2,1,3). The particle moves with constant acceleration i+2j+k. Find its position vector r(t) at time t

let P(1,0,2),Q(2,1,3)P=(1,1,5),r0)=i2k

the direction of v(0) is PQ|PQ|=127(1,1,5)

So v(θ)=|v(0)|β|PQ|=3133(1,1,5)=13(1,1,5)

a(t)=(i+2j+kV(t)=(i+2j+k)dt=ti+2tj+tk+cV(0)=13i13j+53kc=13i13j+53kV(t)=(t+13)i+(2t13)j+(t+53)kr(t)=[(t+13)i+(2t13)j+(t+53)k]dt=(12t2+13t)i+(t213t)j+(12t2+53t)k+cV(0)=i2kc=r(0)=i2kF(t)=(12t2+13t+1)i+(t213t)j+(12t2+53t2)k
  1. ( 10 pts )

Is the following function, f(x,y) continuous at (0,0) ? Give reasons for your answer. f(x,y)={sin3+y3)x2+y2,(x,y)(0,0)0,(x,y)=(0,0)

lim(x,y)(0,0)f(x,y)=lim(x,y)(0,0)sin(x3+y3)x2+y2=lim(x,y)(0,0)sin(x3+y3)x3+y3x3+y3x2+y2=lim(x,y)(0,0)x3+y3x2+y2

=limr0r3cos3θ+r2sin3θr2=limr0r(cos3θ+sin3θ)=0

or 0|x3+y3x2+y2|0=|xx2x2+y2+yy2x2+y2|=|xx2x2+y2+yy20x2+y2||x|+|y|

lim(x,y)(0,0)(|x|+|y|)=0

lim(x,y)(0,0)|x3+y3x2+y2|=0lim(x,y)(0,0)x3+y3x2+y2=0

limf(x,y)f(x)=0=f(0,0)

(x,y)(0,0)

f(x,y) is continuous at (0,0)

9.(9pts) Let f(u) be differentiable, z=f(exy)(y0), and zx+yzy=1

If f(1)=0, find f(u)

zx=f(exy)exy,zy=f(exy)ex

zx+yzy=2f(exy)exy=1, let u=exy

2f(u)u=1dfdu=12uf(u)=12ln|u|+c or =12ln|2u|+f(u)=12ln|u|+cf(1)=c=0f(u)=12ln|u||f(u)=12|n|,f(1)=12ln2+c1=0

10.(8pts)

Find the Taylor series for f(x)=ln(x+x2+1) at x=0

f(x)=1+x22+1x+x2+1=1x2+1=(1+x2)12=1+k=1(12k)x2k,1<x<1f(x)=x+k=112k+1(12k)x2k+1,1<x<1