Skip to content

MA127-2018春-期中-答案

SUSTech

Midterm II for Calculus II in Spring Semester, 2018 (Solutions)

1

Determine whether the following statements are true or false? No justification is necessary

1-1

F (a) If both fx(x,y) and fy(x,y) exist at (x0,y0), then f(x,y) is continuous at (x0,y0)

1-2

F (b) Let

f(x,y)={xyx2+y2,(x,y)(0,0)0,(x,y)=(0,0)

At the point (0,0),f(x,y) is continuous. [Along y=x&y=2x,f(x,y) as different

1-3

T (c) For the f(x,y) as in (1), both fx(0,0) and fy(0,0) exist. limits as (x,y)(0.0) ]

1-4

T (d) Nonzero vectors u and v are parallel if and only if u×v=0

1-5

T (e) The surface y2x2=z is a hyperbolic paraboloid

1-6

F (f) If f(x,y) and its partial derivatives fx,fy,fxy, and fyx are defined throughout an open region containing a point (a,b), then fxy(a,b)= fyx(a,b)

2

Suppose that the function f(x,y) is differentiable, and f(0,0)=1, fx(0,0)=2,fy(0,0)=3. Then f(x,y)1+2x+3y when both x and y are small (using the standard linear approximation at (0,0) )

3

Find the distance from the point (1,1,5) to the line

L:x=1+t,y=3t,z=2t

 Sud: d=|QP|sinθ|QP×V|=|QP||v|sinθd=|QP×v||V|

4

Find the length of the curve

from (0,0,1) to (2,2,0)

r(t)=(2t)i+(2t)j+(1t2)kP=(1,1,5),Q=(1,3,0)(t=0)QP=1,1,51,3,0=0,2,5V=1,1,2QP×v=|ijk025112|=i+5j+2kd=1+52+22/1+1+22=5

Sol: r(0)=0,0,1,r(1)=2,2,0,0t1

\begin{aligned} & r^{\prime}(t)=\sqrt{2} i+\sqrt{2} j-(2 t) k, \quad\left|r^{\prime}(t)\right|=\sqrt{2+2+4 t^{2}}=2 \sqrt{1+t^{2}} \\ & L=\int_{0}^{1}\left|r^{\prime}(t)\right| d t=\int_{0}^{1} 2 \sqrt{1+t^{2}} d t=\left[t \sqrt{1+t^{2}}+\ln \left(t+\sqrt{1+t^{2}}\right]_{0}^{1}\right \end{aligned} (21+t2dt=t=tanθ21+tan2θsec2θdθ=2+ln(1+2)dt=sec2θdθ=π2=2sec3θdθ=secθtanθ+ln|secθ+tanθ|+c

5

Find the normal vector and the curvature for the helix

r(t)=(acost)i+(asint)j+(bt)k,a,b0,a2+b20

Sol: r(t)=(asint)j+(acost)j+bk=v(t)

|r(t)|=a2+b2=|v(t)|

Unit tangent vector: T=r(t)|r(t)|=1a2+b2asint, a cost, b

dTdt=1a2+b2acost,asint,0,k=|dTdt|1|v|=aa2ya2+b2N=dTdt/|dTdt|=cost,

6

Find lim(x,y)(0,0)x2yx4+y2, if it exists; otherwise give the reason why the limit does not exist

sol: Along pathes y=kx2,k0:f(x,y)=x2(kx2)x4+k2x4=k1+k2

lim(x,y)(0,0)f(x,y)=limx0k1+k2=k1+k2

By the two -path Test for nonexistence of a limit, we see the limit DNES

7

Find wv when u=1,v=2, if w=xy+lnz,x=v2u,y=u+v,

计算链式法则

 sol: wv=wxxv+wyyv+wzzv=y(2vu)+x when u=1,v=2=(u+v)(2vu)+v2uwv=4+(4)=8
  1. (10 pts) Find the critical points of the function f(x,y)=x4+y4+4xy, and use the second derivative test to classify each point as one where a saddle, local maximum or local minimum occurs

Sol:

  • fx=4x3+4y
  • fy=4y3+4x

Critical pts:

{4x3+4y=04y3+4x=0,fxy=4{x=0y=0{x=1y=1{x=1y=1{fxx=12x2fyy=12y2fxy=4H=|fxxfxyfxyfyy|=144x2y216

(0,0):H=16<0 saddle

(1,1):H>0,fxx>0 local min

(1,1):H>0,fxx>0 local min

  1. (10 pts) Find the point on the surface z2=xy+4 closest to the origin

Sol: Minimize f(x,y,z)=x2+y2+z2 s.t. z2=xy+4

substitute f(x,y)=x2+y2+xy+4,fx=2x+y,fy=2y+x

|xy|+44 critical pt. 2x+y=2y+x=0x=y=0z2=4,z=±2

The pts (0,0,±2) are the closest on z2=xy+4 to (0,0,0)

  1. (10 pts) Use Taylor's formula for f(x,y)=xey at the origin to find quadratic

and cubic approximations of f near the origin

#9. By Lagrampe Multiplier: g(x,y,z)=xy+4z2=0;#10.fx=ey,fy=xey,fxx=0,fxy=ey,fyy=xey

f=2x,2y,2z,g=y,x,2z

f=λg2x=λy,2y=λx,2z=2λz

case 1. λ=1:z=±2,x=y=0

Case 2. λ1,z=0=x=2=y or x=2=y f(0,0,±2)=4,f(±2,±2,0)=8 closest to the origin f(x,y)x+xy+12xy2

quadratic oyer.:

f(x,y)f(0,0)+xfx(0,0)+yfy(0,0)

+12[x2fxx(0,0)+2xyfxy(0,0)+y2fyy(0,0)]

=0+x1+y0+12[x20+2xy1+y20]

Cubic appr. = At (0,0)=fxxx=0,fxxy=0,fxyy=ey|y=0=1 fyyy=xey|x=0=0

f(x,y)+q2 advatie +16[x3fxxx(0,0)+3x2yfxxy(0,0)+3xy2fxy(0,0)