Skip to content

Midterm I for Calculu II (Solutions)

  1. (1) an=2n+4n3n+4n=(12)n+1(34)n+11 as n

an+0an div

(2) f(x)=1x(lnx)2,f(x)>0& for x2

an=f(n) for n2

2f(x)dx=21x(lnx)2dx=du=1xdx=lnxln21u2duconv.(p=2>1), (an>0)

an conv. & A.C. (an>0)

(3) an=1nnn,bn=1n

limnanbn=limn1nn=1 both conv. or both div

bn div. Σan div

(4) |an+1an|=(n+1)!(n+2)!(n+3)!(3n+3)!(3n)!n!(n+1+1n+2)!=(n+3)(n+2)(n+1)(3n+3)(3n+2)(3n+1)127<1

an A.C

as n

(5) n=1(1)nUn,un=n2+1n>0,

Un=(n2+1n)(n2+1+n)n2+1+n=1n2+1+n in n

limnUn=0. it is conv. by alternating series tect

n=1un=n=11n2+1+n,bn=1n

unbn=nn2+1+n12un&bn buth conv. or both div. Since 1n div., Un div. In summary, (1)nUn is C.C

  1. |an+1an|=|x|n+1(n+1)2+3n2+3|x|n|x|

radius of cone. r=1

x=1 : n=1(1)n1n2+3 conv by alternating series test

n=11n2+3 div. since1n2+31n11n div

C.C. at x=1

x=1:n=11n2+3 div

In summary, radius of conve is 1; interval of unv. is (1,1];

the series is A.C. in (1,1) & C.C. at x=1

3

f(x)=(x+1)ex=(x+1)[1+x+x22!+x33!+]=1+x+x22!+x33!++x+x2+x32!+x43!+=1+2x+(12!+1)x2+(13!+12!)x3+=1+n=1(1(n1)!+1n!)xn=n=0n+1n!xn
  1. 11+x=11(x)=1x+x2x3+}
[ln(1+x)]=11+xln(1+x)=xx22+x33x44+ln(1+x2)=x2x42+x63x84+cosx=1x22!+x44!x66!+1cosx=x22!x44!+x66!

4 (Continued)

limx0ln(1+x2)1cosx=limx0x2x42+x63x22!x44!+x66!=2
  1. L=02π(dxdt)2+(dydt)2=02π32|sin2t|dt=(4)(32)0π2sin2tdt =3cos2t]0π2=6

  2. r=2sinθ,π4θπ2

r2=2rsinθ,x2+y2=2y,x2+(y1)2=1

A=12π4π2r2dθ=π4π22sin2θdθ=π4π2[1cos2θ]dθ=[θsin2θ2]π4π2=π4+12

Alternative method:

A=14( area of disc )+ area of the triangle =π4+12
  1. (1+x)m=1+k=1(mk)xk,(mk)=m(m1)(m2)(mk+1)k!, for |x|<1

(1+x)12=1+12x18x2+116x3+ for |x|<1

  1. First assume {xn} conv. to 1 . Then limnxn+1=limnxn=L

Thus L=L2+12L=2 (we observe L0 )

Now we show {xn} cons. indeed:

  • Since xn>0, we see xn+1=xn2+1xn12=22 for all n

  • xn+1xn=2xn22xn0

Thus, {xn} is nonincreasing and bounded from below by 22, and therefore it must converge