Skip to content

(2020-2021期中高数上

I.(1)B

( f(x)=|x|sinx={xsinx,x0xsinx,x<0f(x)={sinx+xcosx,x0sinx×cosx,x<0

f(0)=limx0f(x)f(0)x=limx0|x|xsinx=0

f+(0)=limx0+f(x)f(0)x=limx0sinx+xcosxx=limx0(sinxx+cosx)=2

f(0)=limx0(sinxxcosx)=2

f(2)(0) does not exist

f(n)(0) exists, n 最大是 n=1

 (2) A. limx(x2+1x+1axb)=12 户े  i土 y=ax+b+12y=x2+1x+1=x1+2x+1 的: 斩近线 ax+b+12=x1{a=1b+12=1{a=1b=32 忶 =:a=limxx2+1x+1x=1b=limx(x2+1x+1x12)=limx(1xx+112)=112=32

  1. B
g(c)=06(x2+6)dx6=13x3+6x]066=13×36+6=18

(4) . D

c). f(x)=|x|sin(x)f(0)=limx0f(x)f(0)x=limx0|x|xsin|x|=0

f(x)=|x|sin|x|f(0)=limx0f(x)f(0)x=limx0|x|xsin|x|=0f(x)=cos|x|f(0)=limx0f(x)f(0)x=limx0cos|x|1x=limx0sin2|x|x1cos|x|+1=12limx0(sin|x||x|)2|x|2x0=0\begin{aligned} f(x)=\cos \sqrt{|x|} \Rightarrow f^{\prime}(0) & =\lim\limits_{x \rightarrow 0} \frac{f(x)-f(0)}{x}=\lim\limits_{x \rightarrow 0} \frac{\cos \sqrt{x \mid}-1}{x}=\lim\limits_{x \rightarrow 0} \frac{-\sin ^{2} \sqrt{|x|}}{x} \\ & =\frac{-1}{2} \lim\limits_{x \rightarrow 0}\left(\frac{\sin \sqrt{|x|}}{\sqrt{|x|}}\right)^{2} \cdot \frac{|x|}{x}=\left\{\begin{array}{l} \frac{1}{2}=f^{\prime}(0) \\ \frac{1}{2}=f^{\prime}(0) \end{array}\right \end{aligned}

f(0) does not expst

(5) C

f(x)=1sinx1+sinxf(x)=cosx(1+sinx)cosx(1sinx)(1+sinx)2=2cosx(1+sinx)2f(π6)=2x32(32)2=439=433

2(1) 0.2π2sin5xcos3x 大数 dx=0

(2) 1120x31f(t)dt=x3x2f(x31)=1 (et x=2f(7)=112

(3) 13x3+2x1x43,f(x)=(x+1x)2=x2+2+1x2

f(x)=13x3+2x1x+c,f(1)=1c=43

(4) 2,x2+y2+z2=1322xx+2yy+2zz=0

let t=x0.x(t0)=3,x(t0)=4,y(t0)=4,y(t0)=3

z(t0)=1224+24+24z(t0)=0z(t0)=2
  1. aa2+1limsas2+1a2+1sa=dds(s2+1)|s=a=aa2+1

  2. (1) limx3+xx+1x2+x2=limx3+xx2x+1x21+1x2x2=0

  1. limx0cosxsec2xxsinx=limx0cosx1cos2xxsinx=limx0cos3x1xsinx=limx0(cosx1)xsinxcos2x+cosx+1)

=3limx0cosx1xsinx=3limx0sin2xxsinx1cosx+1=32limx0sinxx=32

  1. (1) 02π|sin2xcos2x|dx=02π|cos2x|dx=8024cos2xdx=4sin2x]024=4

  1. 01(x+2)1x2dx=01x1x2dx+2011x2dx=13(1x2)3201+2xx4=13+π2=
  1. f(x)=x3+x2xx2

(i) f(x)=x3+x2xx2=(x1)(x2+x+2)x(1x)=x2+x+2x=x12x domain. x0. x=1

f(x)=1+2x2,f(x)=4x3

let f(x)=0x=±2x1x2f(x)<0f(2)=2+22=221

citifical points at x=±2

f(x)=4x3x<0,f(x)>0 concave up but x0 hes inflection print x>0,f(x)<0 concave down

(2) horizontal agunptote: no. vertical asymptote: x=0. oblique asymptote: y=x1

  1. (1) y=11+2xt21dtdydx=2(1+2x)21=24x2+4x

(2) x2y2=92x2ydydx=0dydx=xy=54

y(4)=54(x5)

T. {y=x2y=2xx22x2=2xx=0,x=1

s=01[(2xx2)x2]dx=01(2x2x2)dx=x223x3]011=123=13

 8. y=xy=2x1x2=4x24x+1(3x1)(x1)=03x24x+1=0x=13,x=1, V=2π01(x+1)(x(2x1))dx=2π01(x322x2+x+x2x+1)dx=2π(25x5223x312x2+23x32+x)]01=2π(252312+23+1)=9π5

  1. f(x) is continuous on 6,1]f(x) has max, min., f(α)=M=f(x)
f(β)e1f(x)dxf(α)