Skip to content

Answer

2021-2022 Calculus I Mid

1.Multiple Choice Questions:

(1) .B

(2) .A

(3) .C

(4) .A

(5) .C

2.Fill in the blanks:

(1) . 3

(2) .n !

(3) .2sinx+xcosx4xsinxsinx

(4) .16

(5) .y=x+1

3.SΔ100, the equal sign holds when a=b=102

4.dydx|x=0=0,d2ydx2|x=0=12

  1. 2π(π)22

6.(1)43

(2) 113

7.(1)124

(2) 12

8.y=2x+1

9.when x=π4,f(x) takes its minimum and f(π4)=221

2020-2021 Calculus I Mid

1.Multiple Choice Questions:

(1) .B

(2) .A

(3) .B

(4) .D

(5) .C

2.Fill in the blanks:

(1) . 0

(2) .112

(3) .13x3+2x1x13

(4) .-2

(5) .aa2+1

3.(1) 0 .(2)32

4.(1) 4 .(2)13+π2

5.(1)local maxima at x=2, local minima at x=2

y=(x3+x2)xx2

(2) horizontal asymptote: not exist;vertical asymptote: x=0 ;oblique asymptotes: y=x1

6.(1)dydx=4x2+x

(2) y=54(x5)+4

7.The area is 13

8.The volume is 9π5

9.You can easily show the conclusion by the mean value theorem of integration for continuous functions

2019-2020 Calculus I Mid

1.True or False:

(1) .TRUE

(2) .FALSE

(3) .TRUE

(4) .TRUE

(5) .FALSE

(counter-example: f(x)=1 can be considered as peridic function with period 1, then g(x)=x is not a periodic function with f(x)&g(x) satisying such condition)

2.Multiole Choice Questions:

(1) .D

(2) .B

(3) .C

(4) .D(keep ur eyes open: B is a Common Mistake )

(5) .B

3.(1)Deravatives is nonnegative, and does not exist zero point which changes sign, so local maxima and local minima do not exist.inflection point: x=0

(2) horizontal asymptote: not exist;vertical asymptote: NE;oblique asymptotes: y=x

(3)

4.(1)54+sin5

(2) π4

5.(1)16a4+12

(2) 423

6.Write the explicit function respectively as r1(x)(y from 23to1 )and r2(y from 0to23 )on [0,169] .Obviously, volume is 0169(π(2r1(x))2)dx0169(π(2r2(x))2)dx=

此类题不考, 无需担心.

7.f(11π60)=π45+33

8.The area is 02(3x14x2)dx01(3x(x+1))dx=52

9.All critical points on R can be found, x=0/±(π4+kπ2)14, where k=0,1,2 . In the interval [1,1],x=0/±(π4)14

10.Structure ϕ(x)=f(x)αxβthen  let α=f(b)f(a)ba, hence, by Rolle's theorem, qed

2022-2023 Calculus I Mid

  1. Multiple Choice Questions:

(1) .C

(2) . B

(3) .A

(4) . C

(5) .A

  1. Fill in the blanks:

(1) . 2π

(2) . 16 or -16

(3) .more than 2 methods, 11215/4

(4) . 2

(5) . 0

  1. Proof. recall how we show the existence of root. And we assume there only 1 root and deduce a contradiction algebraically

I draw 2 figures for illustration

Plot [x5+2x100,{x,1,3}]

绘图

  1. 37168 substitution: xtanθ

  2. we know linear approximate part L(x)=f(x0)+f(x0)(xx0) answer is 32x+3

  3. hint: rewrite 2(x1)+3+b+1x1, b=1.a=3

  4. nothing to write, you just take the derivative of that, and then solve the equation

  5. y=17(x1)+1,hint: 2y3y2+3y4=0(y1)()

  6. F(x)=0xxtf(x2t2)dt====12x0xf(t2+x2)d(t2+x2) then you can compute it..