Skip to content

2024-2025学年春季学期线性代数期中考试试卷

meta
考试科目: 线性代数

考试时长: 120 分钟

开课单位: 数 学 系

命题教师: 线性代数教学团队

本试卷共(7) 大题, 满分(100) 分.(考试结束后请将试卷, 答题本, 草稿纸一起交给监考老师)

This exam paper contains 7$ questions and the score is 100 in total.(Please hand in your exam paper, answer sheet, and your scrap paper to the proctor when the exam ends)

C(A) : the column space of matrix A

C(AT) : the row space of matrix A

N(A) : the nullspace of matrix A

N(AT) : the left nullspace of matrix A

O : the zero matrix

rank A : the rank of matrix A

1.(15 points, 3 points each) Multiple Choice.Only one choice is correct

(共 15 分, 每小题 3 分) 选择题, 只有一个选项是正确的

1-1

Let A be a 3×4 matrix with rank A=2 and

P=[111022003123]

then rankPA=

A 为一个秩为 2 的 3×4 矩阵,

P=[111022003123]

rankPA=

(A) 1

(P) 2

(C) 3

(D) 4

1-2

Which of the following subsets of R3 is a subspace of R3 ?

下列集合构成 R3 的子空间的是?

(A) V1={[x1x2x3]R3|,x1+x2+x3=1}

(B) V2={[x1x2x3]R3|,x12+x22x32=0}

(C) V3={[x1x2x3]R3|,x1+x2+x3=0}

(B) V4={[x1x2x3]R3|,x10,x20}

1-(3)

Let u,vR4,λR. which of the following assertions is false?

u,vR4,λR. 以下哪个说法是错误的?

(A) Suppose u,v are nonzero vectors and uTv=0. then u,v are linearly independent

(B) u+v2+uv2=2(u2+v2)

(C) λu=0. then λ=0 or u=0

(D) uTv=0. then u=0 or v=0

1-(4)

[100010101]2024[123456789][010100001]2025=

(A) [213546405620316081]

(B) [546213405620316081]

(D) [123456203140566081]

(D) [12148566073231822389]

1-(5)

Let A be an m×n real matrix and bRm. Suppose Ax=b has infinitely many solutions, which of the following assertions must be true?

Am×n 实矩阵, bRm如果 Ax=b 有无穷多解, 下列哪个结论一定是正确的?

(A) A is a square matrix

(B) rankA=m

(C) rankA=n

(D) rankA<n

2.(20 points, 5 points each) Fill in the blanks

(共 20 分, 每小题 5 分) 填空题

2-(1)

Let A=[164032002]Then A1=

2-(2)

Let A=[1224t3311] and B be a 3×3 nonzero matrix such that AB=OThen t=

2-(3)

Let A=[12324638751213]A basis of N(A) is

2-(4)

Let A=[1111222411233358] Then dimC(A)=

3.(10 points)

Find an LU factorization of the matrix

求下列矩阵的一个 LU 分解:

[45686712712]

4.(20 points)

Consider the following system of linear equations

(I):{x1+x2+x3+x4+x5=13x1+2x2+x3+x43x5=λx2+2x3+2x4+6x5=35x1+4x2+3x3+3x4x5=μ

(A) For what values of λ and μ does the system( I ) have no solution or infinitely many solutions.当 λ,μ 满足什么条件时, 上述线性方程组( I ) 无解, 有无穷多解?

(B) Solve for all the solutions of (I) if the system is consistent.在方程组(I) 有解时, 求出其通解

5.(20 points)

Let V=R2×2 be the vector space of all 2×2 real matrices.Define a map as follows:

T:VV,T(A)=A+AT,AV

(A) Show that T is a linear transformation.证明: T 为线性变换

(B) Let kernel T={AVT(A)=O}. where O denotes the 2×2 zero matrix.Show that kernel T is a subspace of V and find a basis for kernel T

设 kernel T={AVT(A)=O}. 这里 O 表示 2 阶零矩阵.证明 kernel TV 的一个子空间, 并求 kernel T 的一个基向量组

(C) Find the matrix representation of T with respect to the following ordered basis of V :

求线性变换 T 在如下 V 的有序基下的矩阵表示:

[1000],[0100],[0010],[0001]

(D) Find all matrices A such that T(A)=[1221]

求所有满足 T(A)=[1221] 的矩阵 A

6.(10 points)

In physics, Hooke's law states that(within certain limits) there is a linear relationship between the length x of a spring and the force y applied to(or exerted by) the spring. That is, y=cx+d. where c is called the spring constant.Use the following data to estimate the spring constant(the length is given in inches and the force is give in pounds)

在物理学中, Hooke's law 说的是(在有限范围内) 作用在弹簧上的力 y 和弹簧的长度 x 存在线性关系.也就是说, y=cx+d. 其中 c 称之为弹簧常数.请用下列表格提供的数据估计弹簧常数(长度的单位是英寸, 力的单位是磅)

lengthforce
xy
3.51.0
4.02.2
4.52.8
2.04.3

7.(5 points)

Let A,B be 5×6 real matrices with rank A=2. rankB=3. and rank(A+B)=5 Show that there exist 5×5 invertible matrix P and 6×6 invertible matrix Q such that

A,B5×6 实矩阵, 且 rankA=2,rankB=3. 以及 rank(A+B)=5

证明: 存在 5 阶可逆矩阵 P 和 6 阶可逆矩阵 Q 使得

PAQ=[100000010000000000000000000000] and PBQ=[000000000000000100000010000001]