Skip to content

2023秋线性代数期中-答案

Suggested solutions. Nov.122023

Question 1

(1) A

(2) B

(3) D

(4) B

(5) D

Question 2

(1) 21

(2) A1CB1

(3) 1 or -3

(4)

[1911511]

(5)

±16[121]

Question 3

(A)

A basis for C(A):

{[1012],[2110],[1131]}

A basis for C(A):

{[10103],[01201],[00011]}

or

{[12516],[01212],[11131]}

A basis for N(A):

{[12100],[31011]}

A basis for N(A):

{[51331]}

(B)

[5212]

Question 4

Gaussian Eliminations give:

[111222a11a11aa12][111220a+233a400a100]

case1

If a=2, then rankA=23=rank(A;B)

AX=B has no solution

case2

If a1 and a1, AX=B has a unique solution

[11120a+23300a11a]x=[101][11120a+23a400a10]x=[3aa+2a4a+20]X=[13aa+20a4a+210]

case3

If a=1, Ax=B has infinitely many solutions

[111203330000]x=[110]+k1[011][111203330000]x=[110]+k2[011]X=[11k11k21k1k2],k1,k2 arbitrary constants

Question 5

(A) Let X,YM2×2(R) and cR, then we have

T(CX+Y)=[trA(CX+Y)trB(CX+Y)trC(CX+Y)]=C[tr(AX)tr(BX)tr(CX)]+[tr(AX)tr(BY)tr(CY)]=CT(X)+T(Y)

(B)

T(v1)=[100]=1[100]+0[010]+0[000]T(v2)=[100]=1[100]+0[010]+0[001]T(v3)=[011]=0[100]+1[010]+1[001]T(v4)=[011]=0[100]+1[010]+1[001]

Therefore, the matrix representation of T with respect to v1,v2,v3,v4 and w1,w2,w3 is:

[110000110011]

(C) Since

T(A)=[200],T(B)=[010],T(C)=[001]

we can take X to be

12A2B+C=[120012][0200]+[0010]=[122112]

Question 6

Apply Elementary Row and Column operations to A and C obtain

D1=[Ir000] for A and D2=[Is000] for C

Where r=rankA,s=rankC

Let M=

[AB0C]

Then M can be converted to

M1=[D1C10D2]

via elementary row and column operations

Furthermore, the pivots in D1 and D2 can be used to eliminate the nonzero entries in C1, to obtain

M2=[Ir000000C200Is00000]

In conclusion,

rankM=rankM1=rankM2=r+s+rankC2r+s=rankA+rankC