Skip to content

2023 Fall Final Exam Solution Set

Jan 12, 2024

Choice Answer 15

  • 1 D
  • 2 C
  • 3 B
  • 4 B
  • 5 A

2 25

(1)

uu+1,1;1,n1

(2)

5,7

(3)

[000000000000120241012×20230001202400001]

(4)

122[(1+2)100(12)100]

(5)

1,0

Question 3: 12

(a)

There are two eigenvalues of A:λ1=0 \&λ2=1

A basis for the eigen spacer N(A) corresponding to λ1=0 is:

[11100],[32010],[73001]

A basis for the eigenspace, N(AI), Corresponding to λ2=1 is:

[11110],[30001]

Therefore,

S=[1371312310100100101000101]

(b)

Since S1AS=Λ=[0000000000000000001000001],

A=SΛS1Ak=SΛkS1=SΛS1=A

Question 4: 8

Orthonormalize the columns of A by Gram-Schmidt to obtain

Q=[12161312161302613]

Question 5: 20

5-(a)

AH=[0i0i1i0i0]H=[0i0i1i0i0]=A

A is Hermitian

5-(b)

|AλI|=|0λi0i1λi0i0λ|=(λ)(1)1+1[(1λ)(λ)+i2]+(i)(1)1+2[(λ)i]λ(λ2λ1)+λ=λ(λ2λ2)=0λ=0,1,2λ=0:(AλI)x=0x=[101]λ=1:(AλI)x=0x=[1i1]λ=2:(AλI)x=0x=[12i1]

5-(C)

U=[1213160i32i/6121316]

Question 6: 10

6-(a)

A=[λ3202λ000λ1](λ4)(λ+1)>0(λ1)(λ4)(λ+1)<0

6-(b)

(B) A is negativedefinite if and only if

 1) detA1=λ3<0 2) detA2=λ23λ4>0 3) detA3=(λ1)(λ23λ4)<0λ4>0 or λ<1λ3<0λ1<0}λ<1

Question 7

7- (a)

Since A has n distinct eigenvalues, A is diagonalizable, ie.there exists an invertible P, such that

P1AP=[λ1λ2λn]AB=BAP1APP1BP=P1ABP=P1BAP=P1BPP1AP

Therefore, we can assume A is a diagonal matrix, that is,

A=[λ1λ2λn]AB=[λ1b11λ1b12...λ1b1nλ2b12λ2b22...λ2b2n............λnb1nλnbn2...λnbnn]=[λ1b11λ2b12...λnb1nλ1b21λ2b22...λnb2n............λ1bn1λ2bn2...λnbnn]

Comparing the entries, we see that λibij=λjbij,λiλj, (ij hence bij=0(ij) .It follows that B is a diagonal matrix

7-(b)

(c)A and B can be diagonalized by some invertible matrix P, icc

P1AP=[λ1λ2λn],P1BP=[μ1μ2μn]

Where λi,μi are the eigenvalues of A and B Correspondingly

Choose n polynomials as follows,

fi(x)=(xλ1)(xλi1)(xλi+1)(xλn)(λiλ1)(λiλi1)(λiλi+1)(λiλn),i=1,2,,n

Let f(x)=μ1f1(x)+μ2f2(x)++μnfn(x) .Then it can be verified that f(λi)=μi,i=1,2,,n

P1BP=[f(λ1)f(λ2)f(λn)]=f(P1AP)=P1f(A)P

thus B=f(A)