Skip to content

2023-2024春季线代期中仅供参考

D D C C A

2-1

A1=[1a13ab/23/21/2]

analysis:

[AI]=[100100a10010b32001]

[100100010a10032b01]

[100100010a100023ab31]

[100100010a10001(3ab)/23/21/2]=[IA1]

2-2

2

解析:

法1:

A=[100001000000]

AB =

[100001000000][102020103]=[102103000000]

因此 R(AB)=2

法2: R(A)=2,R(B)=3

R(AB)R(A)+R(B)n=2+33=2R(AB)=2R(AB)min[R(A),R(B)=2R(AB)min[R(A),R(B)]=2

(3)

42023A=42023[111111222]

解析: 算! A2,A3, 即得出规律

(4)

[73103]

解析:

A=[100111]b=[236]

A=[123251147]E21(2)A=[123015147]E31(1)E21(2)A=[1230150210]E32(2)E31(1)E21(2)A=[123015000]A=E211(2)E31(1)1E321(2)[123015000]=[100210121][123015000]=LU

A

4-A-(1)

C(A), 对 A 行变换

A[020300021000001000000]C(A)=span{[2141],[41105],[6327]}

4-A-(2)

C(A)A 行变换

PS: 注意本行很长

A=[000021414110511116327][11110123036903410000][1111123101000]C(A)=span{[02416],[01113],[041012]}

4-A-(3)

N(A)

Ax=0[020300021000001000000][x1x5]=0{x1,x4Rx2=32x4x3=12x4x5=0x=k1[10000]+k4[03/121/210](k1,k2R)

4-A-(4)

N(A)

Ay=0[1111012300101000000000][y1y2y3y4]=0{y1=y4y2=y4y3=y4y4Ry=k0[1111],k0R

(b)

Ax=b 时 利用高斯消元化简增广矩阵(略)

令出一个特解

xp=[15131]x=xp+xn=[15131]+k1[10000]+k4[13/21/210],k1,k4R

X=[abcd],

 则 XA=[abcd][1102]=[aa+2bcc+2d]AX=[1102][abcd]=[a+cb+d2c2d]T(X)=XA+AX=[2a+ca+3b+d3cc+4d]=(2a+c)v1+(a+3b+d)v2+(3c)v3+(c+4d)v4T([abcd])=(v1v2v3v4)(2a+ca+3b+d3cc+4d)

证明: (A+B)2

=(A+B)(A+B)=A2+AB+BA+B2=A+BA2=A,B2=BAB+BA=0(1)B(AB+BA)=BAB+B2A=(BA)B+B2A=AB2+B2A=0andB2=BAB2+B2A=AB+BA=0(2)

联立(1) (2)

{AB+BA=0AB+BA=0AB=0

得证

(A)

(AB)2=(AB)(AB)=[8043296201][8043296201]=[7203627281541809]

(B) (AB)2=9(AB)

R(A)R(AB)=2R(A)=2, 同理 R(B)=2

A 行满秩, 令 XA=I2 XA 左逆

B 列满秩, 令 BY=I2 YB 右逆

BA=(XA)(BA)(BY)=X(AB)2Y=9XABY=9I